AJ=AD79 912

UNCLASSIFIED
I

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 12/1
AN EFFICIENT ALGORITHM FOI DETERMINING THE LENGTH OF THE LONGES==ETC(U)
JAN 80 S PALLOTTINO, T TOFFOLI NO0014=75=-C=0661
MIT/LCS/TM=149

m |IIII||||III||IIII||IIII||IIII|IIIIII|III||||IIII||I||I|||II||I||||III

N
LABORATORY FOR ﬁ% MASSACHUSETTS

INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

G\ (
r{
M
; @)
1 Do
S
| !
4 g AN EFFICIENT ALGORITEM FOR DETERMINING THE LENGTH
% OF THE LONGEST DEAD PATH IN AN "LIFO" BRANCH-AND-BOUND
% EXPLORATION SCHEMA
1 1
Stefano Pallottino
Tomaso Toffoli
. o
y a ol
e
S o ="
1 ne W

January 1980 \M

This research was suported in part by Grant
NO0014-75-C-0661, Office of Naval Research, ;
funded by DARPA, and in part by the Consiglio *

———p

DDC_FiLE

Nazionale delle Ticherche, Roma, Italy

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

PP)

AT

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF OB oL e BORM

’ 2. GOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER

MIT/I[‘S/'I‘M—149

S. TYPE OF REPORT & PERIOD COVERED

An Efficient Algorithm for Determmmg the
Length of the Iongest Dead Path in an “Lifof

—angd- 6. PERFORMING ORG. REPORT NUMBER
anch and~-Bound Exploration Schema) MIT/1CS/MM-149
7. AUTHOR(s) -q. . CONTRACY OR GRANT BER(s)

< ol Stefano/ Pallottino emsd Tmmasq/ Toffoli & l£

~75-C-g661 ;

NEgo14

R

9. PERFORMING ORGANIZ%‘I‘ION NAME AND ADDRESS 10. PRgiR‘A OE'{.KEOJS:(TTNI:S‘OBJEECT TASK
MIT/Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139
11. CONTROLLING OFFICE NAME AND ADDRESS
ONR/Department of the Navy / /
Information Systems Program
Arlingtaon, VA 22217
MONITORING AGENCY NAME & ADDRESS(if ditfferent from Controlling Otfice) 1S. SECURITY CL ASS. (of thia report)
Unclassified

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

»

16. DISTRIBUTION STATEMENT (of thie Report)

This document has been approved for public release and sale;
its distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If ditferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side if necessary snd identily by block number)

Length of longest dead path
branch-and-bound
LIFO tree search

0. ABSTRACT (Continue on reverse side if necessary and identity by block number)

length of the longest dead path (LIDP) is a widely used parameter in
estimating the efficiency of branch-and-bound optimization algorithms that
employ the LIFO exploration schema. Thanks to two original theorems, we are
able to present a particularly attractive procedure for determining of the
LIDP. In fact, this prooedure requires a number of storage variables which is
‘independent of problem size and very small; moreover, the procedure is self-
contamedmthesensethatltcanbeextemallyattactedtoanymbranch-

DD ";2:"" 1473 E0i1TiON OF 1 NOV 68 43 ORSOLETE i

IICUIITY CLASS”‘ICAT!ON OP THIS PAGE (When Dete Entered)

T407 64¢ Dun

LA AR W G FT bt P PR

SECUMTY CLASSIPICATION OF THIS PASE(Whan Dats Entered)
———————

SECUNITY CLASSIPICATION OF THIS PAGE(When Date Entered)

AN EFFICIENT ALGORITIIM FOR DETERMINING THE LENGTH OF
THE LONGEST DEAD PATH IN AN “LIFO” BRANCH-AND-BOUND
EXPLORATION SCHEMA®*

Stefano Pallottino

Istituto per le Applicazioni del Calcolo “Mauro Picone,” CNR
viale del Policlinico 137, 00161 Roma, Italy

Tommaso Tolloli

MIT Laboratory for Computer Science
545 Technology Sq., Cambridge, MA 02139

Abstract. The length of the longest dead path (LLDP) is a widely
used parameter in estimating the efficiency of branch-and-bound optimiza-
tion algorithms that emnploy the LIFO cxploration schema. Thanks to two
original theorems, we arc able to present a particularly attractive procedure
for determining of the LLDP. In fact, this procedure requires a number
of storage variables which is independcent of problem size and very small;
morcover, the procedure is self-contained in the sense that it can be exter-
nally attached to any LIFO branch-and-bound program without interfering
with its algorithms and data structures.

Keywords: Length of longest dead path, branch-and-bound, LIFO tree search.

1. Introduction

In a particular trec-exploration schema for the branch-and-bound (BAB)
optimization method the scarch is lincarized, i.c., movements are allowed only
between adjacent nodes, and every arc considered in the scarch is cventually
traversed exactly once in cither direction[l]. In this way, nodes that arc en-
countered going down the tree arc encountered again—in the opposite order-—-
on the way up; for this reason, such an exploration schema is called “last-in-
first-out” (LIFO).

During an LIFO cxploration, the BAB algorithm designates a certain sub-
scquence of nodes as increasingly better candidates for the optimum. At the

¥This research was supported in part by Grant N00014-75-C-0661, Officc of Naval
Rescarch, funded by DARPA, and in part by the Consiglio Nazionale delle Ricerche,
Roma, Italy

end of the search, the last such node represents the actual optimum. I onc
had sufficicnt forcknowledge, this node could be reached by a direct path fro.n
the tree root to the node itself; this we shall call the true path. The remaining
explored portion can be visualized as consisting of dead subtrees (i.c., scarch
failures) attached to the true path. The maximum departure from the truc
path, i.c., the length of the longest path in such dead subtrecs, is a significant
paramcter in evaluating the cfficiency of a given BAB algorithm.

While any procedure for determining the length of the longest dead path
(LL.DP) must somehow work in cooperation with the BAB algorithm itself, yet
it would be convenient to have for this a separate, gencral-purpose module
that can be appended “piggy-back,” as it were- - to an arbitrary LIFO-oriented
BAR algorithm without interfering with the algorithm or requiring it to manage
aunxiliary data structures, especially ones distributed over the tree. In the follow-
ing scctions we shall illustrate a simple, efficient, and sclf-contained procedure
which (a) uses a finite, very small amount of storage independent of problem
size, (b) is called in a uniform way by the BAB algorithm at every move on
the tree, and (c) is able to tell the length of the currently longest dead path at
any moment during the search and, in particular, the LLDP at the end of the
search.

2. An informal illustration

Since the LLDP procedure that we are going to describe in no way affects the
operation of the BAB algorithm, certain preliminary conceptual simplifications
are possible. Potentially, the whole scarch tree is available to the BAB algo-
rithin. At any node, according to information accumulated during the search,
this algorithm is frec to decide in what order to examine the outgoing arcs, and
may ignore allogether the existence of any of them and, conscquently, of the
subtrees attached to them. On the other hand, the scope of the LLDP procedure
is restricted to that portion of the problem tree which is efectively traversed.
This portion is also a tree, and henceforth will be referred to simply as the tree.
(As customary in computer science parlance, we call tree what in graph theory is
called an arborescence, i.c., a rooted directed tree.) Since all routing choices are
made ahead by the BAB algorithm, from the LLDP procedure'’s viewpoint the
tree is scen as traversed in a preassigned order; during this traversal certain nodes
are successively received as candidates for the optimum, and these candidates
supersede one another in the same order as they appear.

Note that the BAB algorithm is not allowed any “look-ahcad;" in other
words, a node can be designated as an optimum candidate only while it is being

-visited, and not at some later titne. Morcover, the last candidate in the sequence
is confirmed as the actual optimum only at the end of the exploration, i.c., when
the search returns to the tree's root.

As we shall see, no explicit knowledge of the tree's global structure is re-
quired of the LLDP procedure, and the only information that this procedure
needs to receive from the BAB algorithm is of a local nature. Namely, the LLDP
procedure will be told

(a) when the BARB just stepped onc arc down, or
! (b) the BAB just stepped one arc up; and

(c) when the current nodc is designated as the new candidate for the op-
timurm.

For the sake of illustration, we shall examine first a case where only onc
] optimum candidate is eventually found. The complete exploration journcy of
Figure la (from sTart to sTor) “circumnavigates” the tree, coasting from node
to node along arcs, in successive (upward or downward) steps, in such a way
that every arc of the tree is traversed exactly once in each direction.

4’00& ' Irwt
START G
3 1
" 2
) .
14 —Avn -

*]t R

. —elieda i

optimum iz 741101, 2

:: ‘ / A5P3c137
@ Y e /\%

Fic. 1 (a) Complcte cxploration journcy (dotted line), dead subtrees
(dashed), and true path (thick linc). (b} Schematic representation of the
dead subtrees, with their length and their position along the truc path.

—

Note that, since one does not know until the end of the search whether the
current candidate is indecd the actual optimum, the exploration will continue---
and this may create new dead subtrees even after the actual optimum has been
reached. Since we are interested only in the Jength of the longest dead path, ;
the dead subtrees attached to the true path can be represented merely by the
length of their longest path, as in Figure 1b, where for convenience the dead

3

subtrees explored before finding the optimum are drawn on the left, and the
others on the right of the truc path.

If the situation illustrated in IFigure 1a were static, i.e., if one knew beforchand
which arcs belonged to the true path, then computing the LLDP for each of the
dead subtrees and determining the overall LLDP would be trivial; in this case,
every time that the exploration departed from the true path and entered a dcad
subtrce one would keep track of the distance from the root of that subtree, and
update a “current maximum distance” register every time a greater value were
found.

In practice, there is no way of knowing a priori whether the current can-
didate will turn out to be the actual optimum. This difficulty can be overcome
by kecping two parallel accounts for dead arcs, namely, account I, which will
proceed as if the current candidate were to “win,” and AccounTt Il as if it were to
“loose.” Every time the current candidatc is replaced by a new one, account I
is suitably rcinitialized; both accounts then resume their independent evolution.

More explicitly, account I will work in such a way as to be able to tell the
length of the currently longest dead path (I.CLDP) on the hypothesis that the
dircct path from the tree root to the current node-—which we shall call the open
path. -were the true path. On the other hand, account I will work in such a
way as to be able at any moment to tell the LCLDP on the hypothesis that none
of the optimum candidates encountered so far represents the actual optimum.
At every reinitialization, i.e., when a new optimum candidate is found by the
BAB algorithin, account [will interrogate account IT and obtain the value of
the LCLDP.

To sum up, AccounT I assumes that the true path is known, and only has to
uptdate the LCLDP when a longer path appears in any subsequently explored
decad subtree. As we have remarked above for the static evaluation of the LLDP,
such updating activity is trivial (c[. Figurc 4). On thc other hand, the activity of
account [I, which must dynamically preserve enough information about pre-
viously traversed dead subtrees to serve account I's reinitialization necds, is a
bit more complex, and we shall discuss it in more detail below.

3. Dynamic evaluation of the length of ths longest dead path

Clearly, the open palh cvolves dynamically during the exploration. In the
example of Figure 2a, dead subtree 73, which is “shorter” than Ty and would
be neglected in favor of the latter if the open path coincided with the true
path, might become critical in the determination of the longest dead path if the

1

exploration were to back up along the open path, as shown in Figure 2b, where
subtrec T is “longer” than T;.

® 4
'I;_ --4--1]; - e g
P Taee 2.
1

5 { e

i

[4 N

T 204y o e

(3) ' (3)

Fic. 2 Typical situation in the dynamic cvaluation of the LLDP. The
open path is indicated by a solid linc.

On the other hand, independently of the future course of the exploration, subtree
Ti may be disregarded in comparison with Ty, which is alrcady “longer” than T
and may only become cven “longer” if the exploration were to back up above
T»'s root. Thus, in this case there is no reason for account I to “remember” the
existence of T); only information about root position and length of the longest
path for T2 and T; is still relevant at this point of the exploration and must be
preserved.

In what follows, we sh~!! formally establisk gencral criteria for deciding what
information about previoi.. ly traversed dead subtrees can be discarded in the
course of the search, and what information must be retained. It will turn out
that at no moment daes one have to carry over from previous exploration more
than four independent integer quantities.

First of all, in the light of the above example it is casy to introduce the
following thcorem. (With reference to Figure 3, we shall call Iy, I3, and {3 the
“lengths” of any thrce dead subtrees Ty, Ty, and T3 that are attached in this
order to the open path; and dy, dy, and d3 the distances from each root to the
previous subtree's root or, by default, to the tree's root.)

Tueorem | In the situation of Figure 3a, if
() by >,
then dead subtree Ty can be disregarded in the determination of the LLDP;
similarly, if

=

(b)ly =2 4y,
then Ty can be disregarded.

Proof. For any evolution of the open path, incquality {a) implies that
any dead subtree containing T2 will have a length greater than or equal to that
of any dead subtree containing T, On the other hand, inequality (b) implics
that, no maticr what fraction of the open path between ry and n is eventually
incorporated in a dead tree containing Ty, the LLDP will be independent of [,
since {; will give a greater contribution.g

d, L. L

w
S 8
»

i
1
i
i
i
1
:
o}
N
&
u‘:&l

(@) (b)

- Fi. 3 Details of tree structure and nomenclature for Theorem 1 (a) and
~ Theorem 2 (b).

Rremark 1 Only in the case where) <) < Iy + dy will accounT IT be
unable to decide, without further informalion, whether Ty or Tz can be discarded.

Suppose now that account 1, while already preserving information about
two dead subtrees Ty and T3 (cf. Remark 1), is requested to consider a third dead
subtree T3. I it is impossible to discard any of the three subtrees by pairwise
comparison using Theorem 1, then onc of them can be discarded in any casc in
view of the following theorem.

Turonrm 2 I the conditions for the applicability of Theorem 1 contem-
porarily fail for the pairs (T, T;) and (Ty, T3) (and, consequently, for the pair
(T2, T3)), ice., if b <) < lp+dz and Iy < ly < I3 -} d3, then dead subtree T
can be disregarded in the determination of the LLDP.

Proof. As the scarch progresses, eventually part of the open path will be
incorporated into dead subtrees, while the rest will remain in the true path (TP).
Considering the root r; of subtree Ty, two cascs are possible:

6

(a) m € TP;
in this casc, since Iy > Iy, then dead subtree Ty can be discarded.
(b) rn & TP;
in this case, since §) < I3+ d3, then dead subtree Ty can be discarded.ll

Remark 2 At no moment during the exploration docs account Il
have to retain more information about previously traversed dead subtrees than
that represented by four integers, namely, the root position and the length of
two particular dead subtrees.

Observe that, owing to its “pessimistic” attitude, account Il never
necds to be corrected or reinitialized when a a new optimum candidate is en-
countered. On the other hand, owing to its “optimistic” attitude, accounTt 1
may often prove wrong and must be reinitialized when a new optimum candidate
is cncountered. The only inforination that is required for this reinitialir=tion
is, of course, the length of the currently longest dead path (LCLLDP), whic.. on
such occasion coincides with the valuc of [j in account 1.

At the end of the BAB cxploration, when the current optimuin can-
didate is indced the actual optimum, the LCLDP in account I (denoted by |
in Figure 4) will coincide with the LLDP, i.c., with the quantity the we sct out
to determine.

4. The LLDP procedure DIP

As noted in Section 2, the LLDP procedure that we have been discuss-
ing is called by the BAB algorithm cvery time the latter steps up or down or
finds a new optimum candidate. For convenicnce of implementation, the explicit
version of this proccdure that we present below under the name of DIP will
assume that such calls have been lumped into groups cach corresponding to
a dip, i.e., an uninterrupted sequence of “down” calls followed by an uninter-
rupted sequence of “up” calls; an “optimum” call inay appear between the two
sequences, and cither sequence may be empty.

Proccdure DIP will be called according to the format
call DIP(down, find, up),

where the integer variables down and up represent respectively the nuinber of
downward and upward steps in a particular dip, and the logical variable find
assumes the value true if a new optimum candidate was found at the bottom
of that dip, and false otherwisc.

; Account |
‘ Update Reinitialize i
, | — max(l,d + down) l—1
d «~ max(0,d 4+ down — up) d—0
O T
Account [T {
Add dead branch]
{3 — up !

dj + d3 + down — up

true falsc
true
Th.2 |false Th. 1 Th. I
L e—"0L 1 [—13 lh —~ max(ly - d3,l3)] .
ay «— dy+d3j ldy — dz +dj dy — dy+d;3 '
lda =0 | [d3e=0 dy 0
true 4~
" false’
_ Th. 1
ll — max(ll -— dg, lg)
L0
dl — d] + d2
(12 «— 0
Fic. 4 Overall structure of the LLDP procedure DIP,

i Ak 14 5 elATES i <20 - s bbb s sa

The procedure itsell is illustrated in Figure 4. All internal variables are of
type own integer and arc set to 0 at the beginning of the scarch. Variable np
is renamied “I3" in account T only to put in better evidence the regular struc-
ture of the algorithm. In order to simplify the program’s structure, subscript
3 is always associated with the subtree corresponding to the current dip. The
variables associated with the other two subscripts (1 and 2) are used as needed
to carry over relevant information about at most two previously encountered
dead subtrees, and arc set to 0 when not in use.

A rorTrAN listing of procedurc DIP together with comments and examples
can be obtained by writing to either of the two authors.

Reference

[1] Giorgio Gallo, Peter L. Hammer, and Bruno Simeone, “Quadratic
Knapsack Problems,” IX Int. Symp. on Math. Progr., Budapest, August 1976.

OFFICIAL DISTRIBUTION LIST

pefense Technical Information Center

Cameron Station
Alexandria, VA 22314
12 copies

Office of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

2 copies

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 copy

Office of Raval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area
715 Broadway ~ 5th floor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Office of Naval Research

Code 200

Arlington, VA 22217

1 copy

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor
Commandant. of the Marine Corps
(Code RD-1)
Washington, D. C. 20380

1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Ocean Systems Center,Code 91
Headquarters-Computer Sciences &
Similation Department

San Diego, CA 92152

Mr. Lloyd Z. Maudlin

1 copy

Mr. E. H. Gleissner

Naval ship Research & Development Center
Camputation & Math Department

Bethesda, MD 20084

1 copy

Captain Grace M. Hopper (008)
Naval Data Automation Command
Washington Navy Yard

Building 166
Washington, D. C. 20374

1 copy
Mr. Kin B.

Technical Director

Information Systems Division
(op-91T)

Office of Chief of Naval Operations
Washirigton, D. C. 20350

1 copy

-

